Lecture 17 Still More Carbonyl Chemistry

Chromium (VI) trioxide CrO3

Chromium (III) chloride CrCl₃

Chromium (III) oxide CrO2

Sodium chromate (II) Na₂CrO₄

March 26, 2019

Second Midterm Exam

- When: Tomorrow, Wednesday, 3/27
- When: 7-9 PM (please do not be late)
- Where: Painter 3.02!!!
- What: Covers through last Thursday's lecture
- Remember: Homework problems!!
- Please...bring pencils and an eraser no calculator and no phonesDo a good job!!!

Early Exam

- Authorized students with exam conflict
- When: 5-7 PM Tomorrow, 3/27
- Where: ETC 2.136
- Pencil and eraser no calculator and no phone
- You must stay in the exam room until 7 PM

Chromic Acid Oxidations

Chemistry of the Breathalyzer Test

Chromic (VI) acid

Chromium (III) sulfate

- 1. Chromic (III) acid (aka Jones Reagent) is made by combining sulfuric acid and sodium dichromate.
- 2. Jones Reagent immediately oxidizes ethyl alcohol in your breath to acetic acid.
- 3: Simultaneously, chromium (III) is converted to chromium (VI) sulfate (green).
- 4. You are hosed.

CrO₃, H₃O+ Chromium trioxide

Chromic acid is often made "in situ" (that is, in the reaction flask) through the addition of acid to sources of chromium (such as chromate salts). The large number of possible chromium sources (and acids!) can make this confusing, but it is chromic acid that is the active reagent.

Chemistry 328N

Erin Brokovich

Oxidation at Benzylic Positions

KMnO4 in Base also works

Selective Chromate Oxidations

- Chromic acid and heat Oxidizes benzylic positions bearing at least one hydrogen to acids
- Jones Reagent (H₂CrO₄ in acetone) takes primary alcohols to acids and secondary alcohols to ketones...The acetone keeps the reaction cool. Jones oxidation does not oxidize benzylic positions even with a hydrogen.
- PCC (pyridinium chlorochromate) is weaker yet, it only oxidizes primary alcohols to aldehydes (!) and seconday alcohols to ketones.

The Jones Oxidation Examples

$\frac{\text{PCC Oxidations}}{\text{C}_5\text{H}_5\text{N} + \text{HCI} + \text{CrO}_3 \rightarrow [\text{C}_5\text{H}_5\text{NH}][\text{CrO}_3\text{CI}]}$

Chemistry 328N

Selective Oxidation Reactions

- Jones Reagent (H₂CrO₄ in acetone) takes primary alcohols to acids and secondary alcohols to ketones
- The Tollen's Test Ag(NH₃)₂OH...the silver mirror reaction is a qualitative test for aldehydes and an efficient but expensive way to make acids form aldehydes

Tollens Test

 $2 \operatorname{AgNO}_{3} + 2 \operatorname{NaOH} \longrightarrow \operatorname{Ag}_{2}O(s) + \operatorname{H}_{2}O + 2 \operatorname{Na}^{+1} + 2 \operatorname{NO}_{3}^{-1}$ $\operatorname{Ag}_{2}O(s) + 4\operatorname{NH}_{3} + \operatorname{H}_{2}O \longrightarrow 2\operatorname{Ag}(\operatorname{NH}_{3})_{2}^{+} + 2\operatorname{OH}^{-} \quad \text{(Totally Dissolved)}$ $2(\operatorname{Ag}(\operatorname{NH}_{3})_{2}^{+}\operatorname{OH}^{-}) + \operatorname{R}^{\circ} \operatorname{H}_{R} \longrightarrow 2\operatorname{Ag} + \operatorname{RCOO}^{-}\operatorname{NH}_{4}^{+} + \operatorname{H}_{2}O + 3\operatorname{NH}_{3}$ $\operatorname{Chemistry 328N}$

Ok...more synthesis

From benzene, any thing with less than 3 carbons, and any other reagents that do not become part of the structure.

Keto-enol Tautomerism

Selectivity in Acid Catalysis

α-Halogenation

Acid-catalyzed α-halogenation
Step 1: acid-catalyzed enolization

Step 2: Nucleophilic attack of the enol on halogen

Chemistry 328N

Enolate anions

Hydrogens α to carbonyls are "acidic"

pKa of some acids and some α protons

A span of 59 powers of 10!!!

α-Halogenation

Base-promoted α-halogenation
Step 1: formation of an enolate anion

Base catalyzed α-Halogenation

Base-promoted α-halogenation
Step 2: nucleophilic attack of the enolate anion on halogen

$$\bigcirc CH_2 \bigcirc Br Br \longrightarrow CH_2 \cdot Br + Br$$

α-Halogenation

 In base catalyzed α-halogenation, each successive halogenation is more rapid than the previous one

- the introduction of the electronegative halogen on the α -carbon increases the acidity of the remaining α -hydrogens and, thus, each successive α -hydrogen is removed more rapidly than the previous one

Haloform Reaction

- Iodoform Reaction
- A qualitative test for **methyl ketones**
- A decent way to synthesize carboxylic acids

α-Halogenation

- There are <u>major</u> differences between acid-catalyzed and base-promoted α-halogenation
- Acid catalysis gives the most substituted product
- <u>The rate of acid-catalyzed introduction of a second</u> <u>halogen is slower than the first</u>
 - introduction of the electronegative halogen on the α -carbon decreases the basicity of the carbonyl oxygen toward protonation so monosubstitution is possible.
 - base promoted halogenation goes "all the way" because the product is more acidic than the starting material

Carboxylic Acids

Nomenclature – IUPAC ...

- IUPAC names: drop the -e from the parent alkane and add the suffix -oic acid
- If the compound contains a carbon-carbon double bond, change the infix -an- to -en-

CH ₄	Methane	Methanoic acid	Formic Acid
CH ₃ CH ₃	Ethane	Ethanoic acid	Acetic acid
CH ₃ CH ₂ CH ₃	Propane	Propanoic acid	Propionic acid
$\mathrm{CH}_3\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_3$	Butane	Butanoic acid	Butyric acid

Chemistry 328N

Alkanoic acids

Formula	Common Name	Source	IUPAC Name	Melting Point	Boiling Point
HCO ₂ H	formic acid	ants (L. formica)	methanoic acid	8.4 °C	101 °C
CH ₃ CO ₂ H	acetic acid	vinegar (L. acetum)	ethanoic acid	16.6 °C	118 °C
CH ₃ CH ₂ CO ₂ H	propionic acid	milk (Gk. protus prion)	propanoic acid	-20.8 °C	141 °C
CH ₃ (CH ₂) ₂ CO ₂ H	butyric acid	butter (L. butyrum)	butanoic acid	-5.5 °C	164 ℃
CH ₃ (CH ₂) ₃ CO ₂ H	valeric acid	valerian root	pentanoic acid	-34.5 °C	186 ℃
CH ₃ (CH ₂) ₄ CO ₂ H	caproic acid	goats (L. caper)	hexanoic acid	-4.0 °C	205 °C
CH ₃ (CH ₂) ₅ CO ₂ H	enanthic acid	vines (Gk. oenanthe)	heptanoic acid	-7.5 °C	223 °C
CH ₃ (CH ₂) ₆ CO ₂ H	caprylic acid	goats (L. caper)	octanoic acid	16.3 °C	239 °C
CH ₃ (CH ₂) ₇ CO ₂ H	pelargonic acid	pelargonium (an herb)	nonanoic acid	12.0 °C	253 °C
CH ₃ (CH ₂) ₈ CO ₂ H	capric acid	goats (L. caper)	decanoic acid	31.0 °C	219 °C

Chemistry 328N

Naming acids

 $CH_2 = CH \cdot CH_3$

Propene

Propenoic acid

acrylic acid

Benzoic acid

Nomenclature-Common

When common names are used, the letters
α, β, γ, δ, etc. are often used to locate substituents

 $\begin{aligned} \delta & \gamma & \beta & \alpha & || \\ C-C-C-C-C-OH \\ 5 & 4 & 3 & 2 & 1 \end{aligned} \\ & & & & & & \\ HOCH_2 CH_2 CH_2 CO_2 H & & & \\ HOCH_2 CH_2 CH_2 CO_2 H & & \\ HOCH_2 CH_2 CH_2 CO_2 H & & \\ HoCH_3 CHCO_2 H & & \\ CH_3 CHCO_2 H$

Naming the Salts

- To name the salt of the carboxylic acid, name the cation followed by the name of the anion (two words).
- The anion is named by removing -oic acid and adding ate

The Simple Dibasic Acids $ho - C - (CH_2)_n - C - OH$

n	Total C's	Name (acid)
0	2	Oxalic
1	3	Malonic
2	4	Succinic
3	5	Glutaric
4	6	Adipic
5	7	P???

Chemistry 328N

Synthesis of Carboxylic acids

1. Oxidation of Arene Side-Chains H_3C C_2H_5 HO_2C HO_2C H_2O , heat

CO2H

 CO_2H

CH2CH2CH3

3. Oxidation of Aldehydes

Oxidative Cleavage of Alkenes and Alkynes

Synthesis of Carboxylic acids

